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ABSTRACT

Internet of Things (IoT) and Edge deployments are diverse, complex,
and highly constrained. These properties make correctness difficult
or impossible to verify a priori. We present early work on an auto-
matic deployment right-sizing tool for edge and IoT deployments.
Our tool uses the PROWESS testbed to accurately emulate candidate
deployment form-factors, and optimizes deployment parameters to
minimize costs. We show that our early work finds optimal deploy-
ment configurations 6.3X faster than Bayesian optimization, a state
of the art hyperparameter optimization technique.
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1 INTRODUCTION

The Internet of Things (IoT) and Edge computing constitute new
and expressive levels of the deployment hierarchy for modern work-
loads [10]. New and interesting sensors are driving innovation, new
hardware platforms and accelerators are facilitating new appli-
cations, and privacy concerns are growing. Edge computing and
IoT answer these challenges by providing sensors with increased
intelligence, enhanced security, and rich configurability.

Edge and IoT deployments are, however, difficult to verify in de-
velopment [5]. It can be unclear whether software, hardware, mod-
els, and networks will behave well in concert without deploying in
real-world conditions. Recently, edge and cloud testbeds [2, 3, 8]
have arisen to provide pre-deployment testing. These platforms al-
low users to test edge and IoT related software, but are be too remote
or virtualized to mimic bare-metal performance. Container-based
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Fig. 1: Workflow for an optimized IoT workload.

platforms [3, 7] and PROWESS [3] use local containers that approx-
imate bare-metal performance, but still require users to explore
configurations manually. Users must select hardware, software,
models, and network parameters for tens or hundreds of devices
before deployment. Exploring this parameter space can be prohibi-
tively time consuming for users, resulting in poor configurations
that increase costs or fail unexpectedly.

We present early work on an automatic deployment right-sizing
tool for edge and IoT deployments. Our tool uses a new optimization
algorithm based on Pareto Simulated Annealing (PSA) [6] to quickly
find both feasible and optimal deployment configurations. Our tool
models deployments as a hyperparameter tuning problem, quickly
exploring parameter options to find an optimal parameter set. Our
tool runs on PROWESS, a container-based edge computing testbed,
to run experiments at bare-metal performance. Early results show
that our tool can find optimal configurations for deployment 6.3x
faster than hyperopt by considering the shape of IoT workloads.

2 DESIGN

Figure 1 shows a conventional IoT workload. Sensors collect data
from the world around them, process it in-situ or at the edge, and
relay it to a centralized edge or cloud node. Each aspect of this
workload requires configuration. Sensors and compute nodes must
be correctly provisioned, software must operate within the capabili-
ties of hardware, network properties must be well-understood, and
system goals must be well-calibrated. For complex deployments,
each of these artifacts and their needs must be tested assure cor-
rectness and select appropriate, cost-effective hardware. Users can
test workloads in custom testbeds, but these tests only assure cor-
rectness. Finding bottlenecks and right-sizing components requires
manual parameter tuning. We view this as a hyperparameter tuning
problem. Hyperparameters can include available RAM, CPU type
and share, network characteristics, AI models, system goals, and
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Fig. 2: Early results show that a) our approach quickly finds
optimal configurations compered to prior approaches, and
b) this finding holds as goals change.

more. Balancing these characteristics can be difficult. Conventional
hyperparameter tuning approaches use sampling to learn the shape
of underlying objective functions [1]. Our approach uses intuition
about the underlying shape of IoT deployments to converge faster.

Architectural parameters for IoT workloads often improve per-
formance when increased (e.g more CPU, faster runtime), or hurt
performance when decreased (E.g slower networks, more missed
deadlines). Using this intuition, we devised an optimization algo-
rithm that balances these parameters. Our algorithm, to appear
in full in an upcoming publication, is based on Pareto Simulated
Annealing (PSA) [6]. PSA uses simulated annealing to find and
navigate the Pareto frontier. Given that the optimal configuration is
situated on the Pareto frontier, this algorithm should return an opti-
mal configuration in less evaluations than approaches that sample
an objective function with no intuition about its underlying shape.

3 EARLY RESULTS
Candidate Workload: For our evaluation, we selected a real IoT
workload for Autonomous UAV (AUAV) feature extraction. AUAVs
fly through their environments, sense data, and respond in real-
time [9]. This response requires online and in-situ processing of
sensed data in order to make decisions. Our test workload is a fea-
ture extractor for autonomous UAV navigation in soybean fields [4].
This workload takes sensed data from UAVs and runs multiple par-
allel image processing algorithms to extract features to be fed to
reinforcement learning algorithms for pathfinding. This is a crit-
ical workload for an autonomous UAV, and assuring its correct
execution and proper provisioning is integral to mission success.
Results: We optimized our workload to find the feasible configura-
tion that used the least CPU and RAM. Feasibility was determined
by the speed at which our workloads accomplished their goal. We
ran our sample workload on a PROWESS node with a 12-core Intel
Xeon CPU, Nvidia A5000 GPU, and 256 GB of RAM. We ran a con-
tainerized version of our workload and used PROWESS to constrain
it to various CPU and RAM limits. Our objective function weighted
RAM and CPU utilization equally and sought the minimum RAM
and CPU combination that finished execution before a set time.
Figure 2 (a) shows our workload when our performance goal
was set to 15s. Areas in red denote feasible configurations that fin-
ished execution in less than 15s. The magenta boarder of this range
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represents the Pareto frontier, where workloads begin performing
slower than our goal. Blue configurations are infeasible, meaning
they take longer than our 15s goal time to execute. In Figure 2 (a),
we see the performance of our modified PSA approach as compared
to Hyperopt, a state of the art hyperparameter tuning approach.
Hyperopt uses Bayesian optimization to build and update a Gauss-
ian prior reflecting the shape of the underlying objective function.
This process is reflected by the black regions in the first plot of
Figure 2 (a). Here, hyperopt samples our workload and is eventually
able to identify the optimal configuration in 70 evaluations.

Our approach exploits the underlying shape of IoT deployments.
We start our evaluations at the center of our configuration space.
Moving out along both axes in increments based on a set tempera-
ture, we evaluate points and select new candidates as performance
improves. Given that increased RAM and CPU should garner perfor-
mance improvement, and feasibility should follow a Pareto frontier,
this approach quickly finds and navigates this frontier until an op-
timal configuration is found. Figure 2 (b) shows that our approach
outperforms hyperopt even as goals change. For this workload,
our approach finds the optimal configuration in 15.7 evaluations
as opposed to hyperopt which takes on average 99.4 evaluations,
constituting a 6.3X improvement.

In the future, we plan to evaluate this algorithm on a diverse set
of IoT workloads in simulation and deployment. We believe that
this tool will help identify scale bottlenecks for IoT deployment con-
figurations, decease deployment costs, and eliminate deployment

failures due to misconfiguration.
Acknowledgments: This work was funded by Binghamton University.
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